FACTORS THAT AFFECT IN VITRO FERTILIZATION USING CRYOPRESERVED MOUSE SPERM

Sue Bath Melbourne, Australia

EMMA Cryopreservation Workshop Madrid, Spain May 2012

Outline

Intrinsic Factors

- Strain of mouse
 - Sperm
 - Eggs

Extrinsic Factors

- Cryoprotectant
- Sperm Freezing
- Sperm Thawing
- Incubator
- Sperm Preincubation
- Superovulation Issues
- Fertilization Conditions
- Outcome Assessment

Mouse Strain

- Sperm
 - C57BL/6J vs other strains; form vs function?

Variation in genetically engineered mice

Mouse Strain

- Eggs
 - Superovulation issues
 - Protocol
 - 129 substrains
 - Strain variation in number of eggs
 - Age of female (B6 and other strains)

Methods later with Extrinsic Factors

Extrinsic Factors

Cryoprotectant

IVF rates above 60% have been achieved by C57BL/6J sperm frozen in:

- •Raffinose (18-24%), optimal 23-24 % for B6; other strains no difference between 21 and 24%
- •Raffinose (18%) + 3% skim-milk powder (R18S3)
- •R18S3 + 100mM L-glutamine (same as Fertiup?)
- •R18S3 + 477 uM monothioglycerol

Is one better than the other?

- •Not known, as comparisons have not been done except in the case of 23.7% raffinose and Fertiup.
- L-glutamine stability?

Cryoprotectant

Cryoprotectant

Protocol: 7.5 uL sperm suspension prepared in 180 uL 23.7% raffinose, 90-100 eggs, 500 uL HTF per insert; C57B/6J; n = 3, Mean and SE.

Sperm Freezing

Volume of Cryoprotectant

- Sperm from 2 epididymides in 105 uL to 1.0 mL cryprotectant
- •120-180 uL preferred if sperm are to be preincubated before transfer of motile sperm

Freezing and Storage

- Straws or conical-base cryovials
- Initial freezing in liquid nitrogen vapor
- •Rate of cooling: 37°C 143°C/min
- •Store below -140°C (ie. below the glass transition temperature)

Sperm Thawing

- Rapid, at >2000°C/min
- Use water bath at 37°C or 53/54°C for straws, and 50°C for tubes.
 - If above 37°C, a short time (seconds) in air is required, allowing evaporation of LN₂ from interior of tube/straw, and a ring of frost to form around the outside of the tube/straw before placing it in the water bath.
 - Time in the water bath (straws 6 sec.; vials 30 seconds) needs to be precise.

Incubator

Rapid recovery of atmosphere after opening door

Why Preincubate?

- To allow time for capacitation
 - Promote efflux of cholesterol (MBCD)
 - Reduce proportion of acrosome-reactive sperm and possibly promote tyrosine phosphorylation (Ca⁺⁺ free)
- Selection of motile sperm for IVF

Is Preincubation Necessary?

- •For B6 Yes
- •Generally helpful for other strains; no down side

- 2. Remove dead sperm
- 3. Preincubate in Ca++ free medium

Sperm Preincubation Medium

- •HEPES buffered medium, no added calcium
- Fertilization medium (HTF)
- •TYH + MBCD
- •HTF + MBCD
- •TYH (no added Ca++)
- •TYH (no BSA or added Ca⁺⁺), more data needed to confirm
- •TYH (no BSA, low [Ca++]130 uM)

Sperm Preincubation Medium

Protocol: Sperm preincubated in HEPES buffered calcium - free SIM (0) or SIM (2). After 30 min 6 uL of medium containing motile sperm was transferred to a 200 uL drop of fertilization medium containing 80-90 eggs and overlaid with mineral oil; Sperm prepared in 105 uL 19% raffinose; C57BL/6J; n = 8, Mean and SE.

Superovulation Issues

- Genetic differences in number and quality of eggs
- Needs optimising for each strain
- Some evidence suggesting s/c injections may be better than i/p
- Too much PMSG may result in polyploidy leading to a reduced proportion of pups born after embryo transfer

Superovulation Issues

Improving Egg Numbers and Quality

- •For strains other than C57BL/6, older egg donors (70-75 day-old) may be better
- •129 substrains (129T2 and 129S1,others?), inject 70-75 day-old females with PMSG and hCG 54 h apart and collect eggs 14 h later, or inject with 20 mg/kg GnRH agonist 24 h before PMSG and follow 55 h later with hCG to improve egg fertility/quality. Increases egg number and quality of 3-month-old BALB/c mice; other strains?
- Inject beta estradiol with PMSG
- •Inject inhibin neutralizing antiserum; follow with hCG injection in 48 h. Problem: access to antiserum

Fertilization Conditions

Fertilization Medium

- •HTF or modified version containing increased [Ca++]
- •HTF or mHTF containing reduced glutathione (GSH)
- MEM has been used

IVF Method

- In drops of medium under oil
- In Multiwell plates with no oil
- In Transwells (Corning), no oil
- Volume of fertilization medium (final) from 100-510 uL
- Eggs with/without cumulus
- •Time for co-incubation of sperm and eggs, 5-6 hours
- •Sperm/uL varies; minimum seems to be 150 motile sperm/uL with minimal dead/non motile sperm and with no GSH in the fertilization medium

Outcome Assessment

Important to assess both:

- •fertilization rate
- proportion of embryos transferred producing live pups

Conclusions

Methods are now available to overcome IVF problems using cryopreserved sperm from even the most difficult strains (eg. C57BL/6J)

Major improvements/most robust methods:

- Preincubation of thawed sperm in medium containing MBCD
- Transfer of motile sperm to HTF containing GSH for fertilization

Discussion?

