

Controlled Rate Embryo Freezing Past, Present, Future

Rob Taft
The Jackson Laboratory
May 2012

1972- Success!

- Successful cryopreservation of mouse embryos using equilibrium freezing
 - Whittingham, Leibo, Mazur
 - Wilmut

1972- Success!

- Successful cryopreservation of mouse embryos using equilibrium freezing
 - Whittingham, Leibo, Mazur
 - Wilmut

- Is it reliable?
- Is it safe?
- Will viability be retained long-term?
- Will it be useful?

Effectiveness/Reliability

Table 1. Viability of frozen eight-cell mouse embryos of two inbred strains after storage at -196°C for up to 8 months and aerial transportation

Mouse strain	Length of storage at – 196°C (days)	No. of embryos frozen	No. of embryos recovered	No. of embryos developing to blastocysts in vitro	No. of blastocysts transferred to pseudopregnant recipients	No. of fetuses	No. of liveborn
C57BL/6J Total	2 189 222	48 38 26 112	48 38 25	48 35 22 105	35 22 57	11 10 21	 5 3 8
BALB/cWt	2 189 222	66 11 10	61 10 10	39 3 5			
Total		87	81	47	8	4	3

Whittingham and Whitten 1974

Long term viability

Table 1. Survival and development in vitro of frozen-thawed 8-cell mouse embryos after exposure to various doses of γ -irradiation during storage at -196° C

Radiation dose (cGy)	No. of ampoules* thawed	No. of embryos recovered (%)	No. of embryos normal at recovery (%)	No. of morulae and blastocysts after 24 h in culture (%)
0	8	225 (93.8)	135 (56·3)	160 (66-7)
10	8	223 (92.9)	142 (59.2)	151 (62.9)
50	8	222 (92.5)	147 (61.3)	157 (65-4)
100	8	223 (92.9)	155 (64-6)	172 (71-7)
200	8	217 (90.4)	144 (60-2)	154 (64-2)

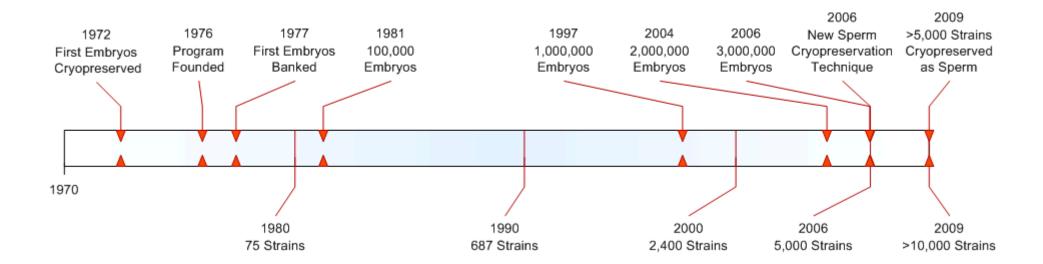
^{*} Each ampoule contained 30 8-cell embryos.

All percentages calculated from total no. of embryos originally frozen.

Glenister et al 1984

Utility

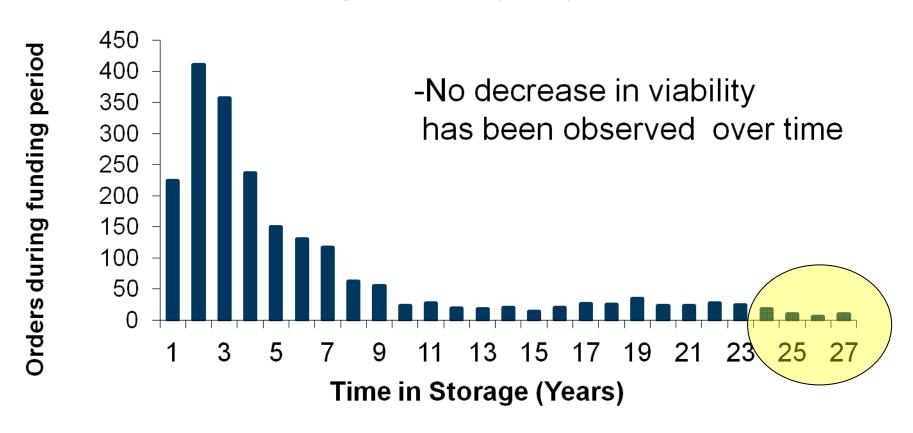
- Banking of inbred strains, mutations, recombinant inbred strains- proposed by 1974
- Use of cryopreservation as <u>protection against loss</u>proposed by 1974
- Facilitating <u>standardization</u> and <u>international</u> <u>distribution</u> of strains- demonstrated in 1974
- Tool for reducing rate of **genetic drift** proposed by 1977



Equilibrium freezing of embryos today

- Effective, reliable, safe
- Used routinely to
 - Bank inbred strains, mutations and recombinant inbred strains
 - Protect strains against loss
 - Facilitate standardization and international distribution
 - Reduce genetic drift
- Widely used by repositories and core facilities
 - Taught in courses

JAX Repository perspective

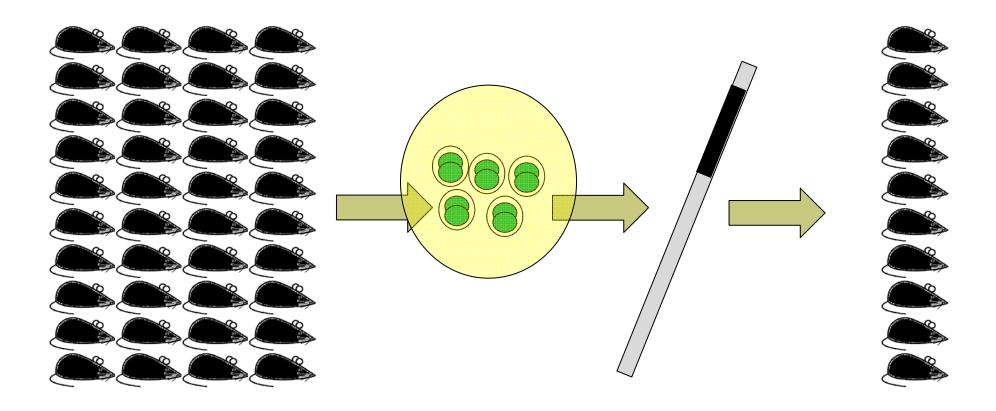

Today:

- 6,000 strains
- -3,900,000 embryos cryopreserved
- -1,000,000 embryos thawed or shipped

Viability is maintained over time

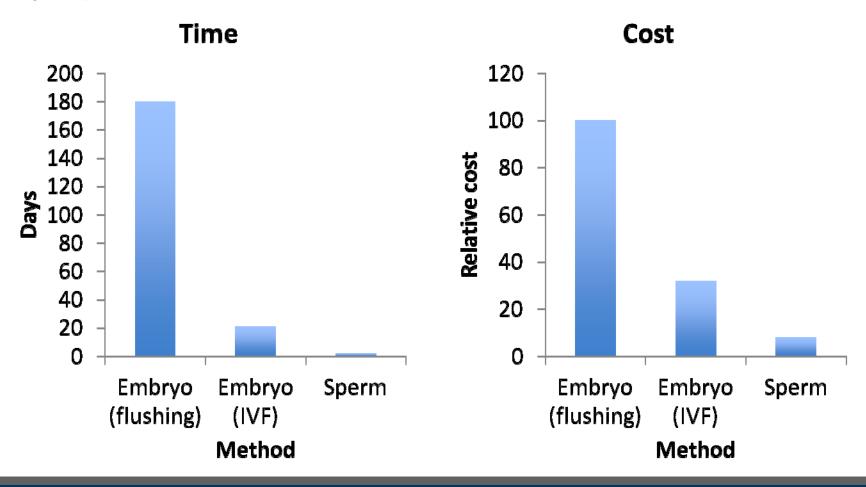
Frequency of Recovery Following Cryostorage for Varying Lengths of Time (Years)

Looking ahead

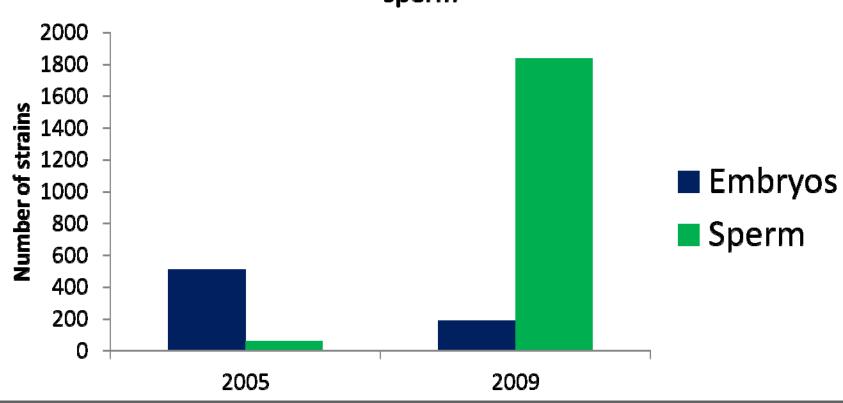


Alternative methods

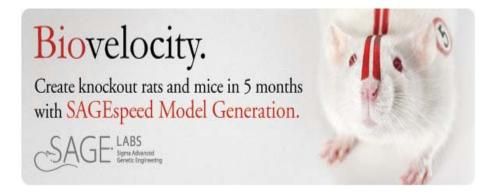
- Vitrification- Rall and Fahy, 1985
 - Effective
 - Less Investment required



Effectiveness isn't a limitation- yield is


Time and cost of embryo and sperm cryopreservation

Displacement of embryo cryopreservation by sperm cryopreservation


Number of strains cryopreserved using embryos or sperm

Zinc Fingers and TAL effectors-Alternatives to conventional strain creation

- Reduced time to make model
- Model can be re-made quickly

Will it become more cost effective to re-make model instead of preserving it?

Summary- Equilibrium freezing of embryos

- Is effective and reliable
- Has broad utility
- Widely used
- Relatively high cost as made alternatives attractive
- New technologies for making mouse models may impact use
- Mouse models are becoming more complex, creating a growing need to be able to cost effectively preserve entire genome.

Questions?