IVF using vitrified unfertilized oocytes

CSIC Main Campus, Madrid, Spain, 7-8 May 2012 Naomi Nakagata (CARD, Kumamoto University)

Mon	Tue	Wed	Thu	Fri	Sat	Sun
PMSG		hCG	IVF	ET/Freez	<u>zing</u>	
hCG	IVF	ET/Free	zing		PMSG	

Advantages of cryopreservation of unfetilized oocytes

It's not necessary to administer PMSG and hCG.
 (You do not need to go to a mouse room in the weekends and holidays.)

Mon	Tue	Wed	Thu	Fri	Sat	Sun
IVF	ET/Freezin IVF	ng ET/Freezi	ng ET/Erooz	ing		
		ΙΥΓ	EI/FICEZ	ing		
			IVF	ET/Freez	ing	
You can carry out in vitro fertilization when needed!						
2) Formala mina for damana of a contra da materia d to be light						

2) Female mice for donors of oocytes do not need to be kept.

Simple vitrification of unfertilized oocytes

Use of frozen-thawed oocytes for efficient production of normal offspring from cryopreserved mouse spermatozoa showing low fertility. Sakamoto W, Kaneko T, Nakagata N. Comp Med. 2005 55(2):136-9.

Production of chimeric mice from cryopreserved blastocysts. Nakao K, **Nakagata** N, Katsuki M. Exp Anim. 1998 47(3):167-71.

Simple and efficient vitrification procedure for cryopreservation of mouse embryos Nakao K, Nakagata N, Katsuki M. Exp Anim. 1997 46(3):231-4.

Use of cryopreservation techniques of embryos and spermatozoa for production of transgenic (Tg) mice and for maintenance of Tg mouse lines. Nakagata N. Lab Anim Sci. 1996 46(2):236-8.

Studies on cryopreservation of embryos and gametes in mice. Nakagata N. Exp Anim. 1995 44(1):1-8.

Production of normal young following transfer of mouse embryos obtained by in vitro fertilization between cryopreserved gametes. Nakagata N. J Reprod Fertil. 1993 99(1):77-80.

Cryopreservation of unfertilized mouse oocytes from inbred strains by ultrarapid freezing. Nakagata N. Jikken Dobutsu. 1990 39(2):303-5.

High survival rate of unfertilized mouse oocytes after vitrification. Nakagata N. J Reprod Fertil. 1989 87(2):479-83.

Schedule for collection of oocytes

Mice

C57BL/6J

- $\vec{\bigcirc}$ 3 to 6 months of age
- \bigcirc 8 to 12 weeks of age

Dose : 7.5IU/head

Simple vitrification

HTF containing 20% FCS

1M DMSO (room temperature)

Materials and Equipment

Procedure for IVF using vitrified unfertilized oocytes

Vitrified oocytes after warming

No. of vitrified oocytes No. of recovered oocytes No. of morphologically oocytes

2578

2517 (97.6%) 2306 (91.6%)

Fertilization rates using three different oocyte-sperm combinations

Oocyte	Sperm	No. of inseminated eggs	No. of 2-cell embryos (%)
Vitrified	Fresh	321	305 (95.0)
Vitrified	Cold stored	307	245 (79.8)
Vitrified	Frozen	874	746 (85.4)

Development to blastocysts of 2-cell embryos produced by three different oocyte-sperm combinations

Oocyte	Sperm	No. of 2-cell embryos cultured	No. of blastocysts (%)
Vitrified	Fresh	200	168 (84.0)
Vitrified	Cold stored	125	103 (82.4)
Vitrified	Frozen	306	226 (73.9)

Development to pups of 2-cell embryos produced by three different oocyte-sperm combinations

Oocyte	Sperm	No. of 2-cell embryos transferred	No. of live young (%)
Vitrified	Fresh	100	35 (35.0)
Vitrified	Cold stored	120	55 (45.8)
Vitrified	Frozen	440	188 (42.7)

Strain of frozen sperm	Status of oocytes	No. of oocytes injected	No. (%) of oocytes that survived ^a	No. (%) of oocytes fertilized ^b	No. (%) of embryos that developed to two-cell stage ^c	No. of two-cell embryos transferred	No. (%) of offspring ^d	No. (%) of offspring with transgene ^d
C57BL/6J	fresh	228	121 (53) ^e	118 (98)	116 (98)	106	43 (41)	NA
C57BL/6J	frozen	223	181 (81) ^g	172 (95)	171 (99)	162	68 (42)	NA
TgA	frozen	30	23 (77) ^f	21 (91)	21 (100)	20	8 (40)	2 (10)
Tg B	frozen	40	36 (90) ^g	35 (97)	35 (100)	35	7 (20)	4 (11)
Tg C	frozen	140	$115 \ (82)^{ m g}$	111 (97)	110 (99)	104	17 (16)	4 (4)
$Tg^{-}D$	frozen	82	68 (83) ^g	63 (93)	63 (100)	63	7 (11)	6 (10)

Postimplantation development of embryos derived from frozen-thawed C57BL/6J oocytes injected with frozen-thawed C57BL/6J or transgenic spermatozoa

Tg A, B6;D2-Tg(APCS)1lmeg (6); Tg B, C57BL/6J-Tg(MT-hV30M)5lmeg (27); Tg C, B6;CB-Crebbp^{GtAyu3112lmeg} (20); and Tg D, B6;CB-Cdk6^{GtAyu8104lmeg} (1). Percentages with different letters were significantly different (e versus f, P < 0.05, e versus g, P < 0.005).

NA, not applicable.

^aPercentages from no. of oocytes injected. ^bPercentages from no. of oocytes survived.

^cPercentages from no. of oocytes fertilized.

^dPercentages from no. of two-cell embryos transferred.

Future mouse bank

Advantages of the simple vitrification method

- **1. Very simple**
- 2. Less time-consuming
- **3. Reduced cost for freezing equipment**

4. High survival rate after warming

Reproductive Engineering Techniques

in Mice

Second Edition

Copyright Notice

Department of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Japan Senior Editor: Naomi Nakagata Last update: 11 May, 2011

INDEX

Preparing and Assembling Pipettes for Embryo Handling In Vitro Fertilization Simple Vitrification of Mouse Embryos Vitrification and Transplantation of Mouse Ovaries Cryopreservation of Mouse Spermatozoa In Vitro Fertilization using Cryopreserved Spermatozoa Removing one Cauda Epidydimis from an Anesthetized Male Preparation of Laser-microdissected Oocvtes Partial Zona Dissection (PZD) Collecting Two-Cell Stage Embryos Transport of 2-Cell Embryos at Cold Temperature Transportation of Mouse Oviducts Containing 2-Cell Embryos at Low Temperature (0°C) Vasectomy for the Creation of Sterile Males Embryo Transfer into the Oviduct Production of Chimeric Mice via 8-Cell Aggregation Embryo Transfer into the Uterus Caesarean Section and Fostering References

Appearance of Transfer Recipients and their Pups Tables of Media Composition Storage of Media and Solutions in Glass Ampoules under Nitrogen Gas

Online manuals

- Collection and Transport at Cold Temperature of Cauda Epididymis
- In Vitro Fertilization using Epidydimal Sperm Transported at Cold Temperature
- In Vitro Fertilization
- Cryopreservation of Mouse Spermatozoa
- In Vitro Fertilization using Cryopreserved Spermatozoa
- Simple Vitrification of Mouse Embryos and
- Procedure for Thawing of Frozen Embryos
- Transport of 2-Cell Embryos at Cold Temperature

Normal young following transfer of mouse embryos obtained by in vitro fertilization between cryopreserved gametes

	Reproductive capacity of young			
	No. of females used for Progeny test	No. of females that delivered live young (%)	Average no. of young born	
	5	5 (100)	6.4±1.6	
I believe strongly that cryopreservation of un	nfertilized oocyt	tes represents an	hextremely	

World Hub Centers for Mouse

Resource

