

Transportation of frozen and unfrozen materials

RIKEN BioResource Center
Bioresource Engineering Division
Keiji Mochida

RIKEN Institutes

Sayo-gun, Hyogo

[Harima Institute] RIKEN SPring-8 Center

[Headquarters] XFEL Project Head Office

Kobe, Hyogo

[Kobe Institute] Center for Developmental Biology Center for Molecular Imaging Science

[RIKEN Advanced Institute for Computational Science]

[Headquarters] RIKEN Next-Generation Supercomputer R&D Center

Nagoya, Aichi

Nagoya Facility

Wako, Saitama

[Headquarters]

[Wako Institute] Advanced Science Institute Nishina Center for Accelerator-Based Science Brain Science Institute

[RIKEN Research Cluster for Innovation] RIKEN Innovation Center RIKEN Biomass Engineering Program Computational Science Research Program

Sendai, Miyagi

Sendal Facility

Tsukuba-shi, Ibaraki

[Tsukuba Institute] BioResource Center

RIKEN BRC

60km far from Tokyo

Yokohama City, Kanagawa

[Yokohama Institute]
Plant Science Center
Center for Genomic Medicine
Research Center for
Allergy and Immunology
Omics Science Center
Systems and Structural Biology Center
Bioinformatics And Systems
Engineering division
[RIKEN Research Cluster

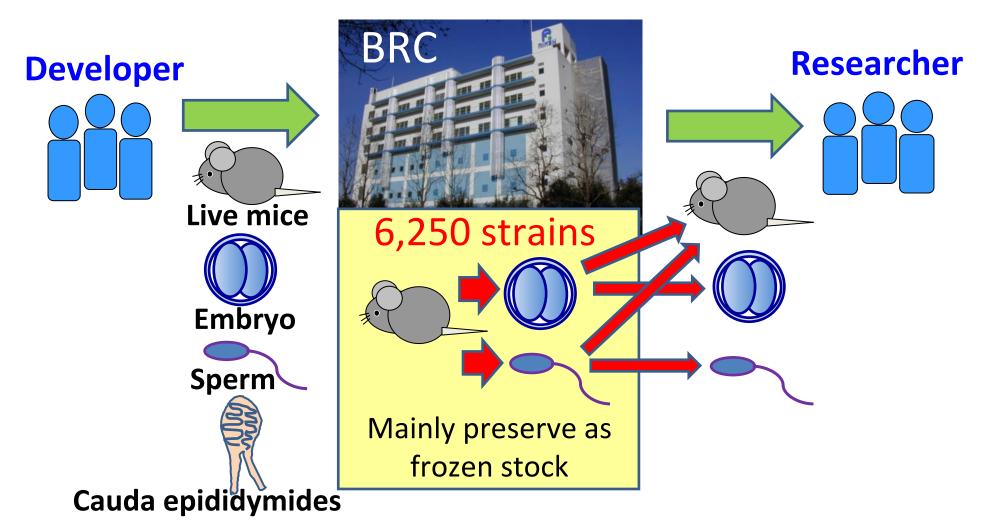
for Innovation] RIKEN Program for Drug Discovery and Medical Technology Platforms

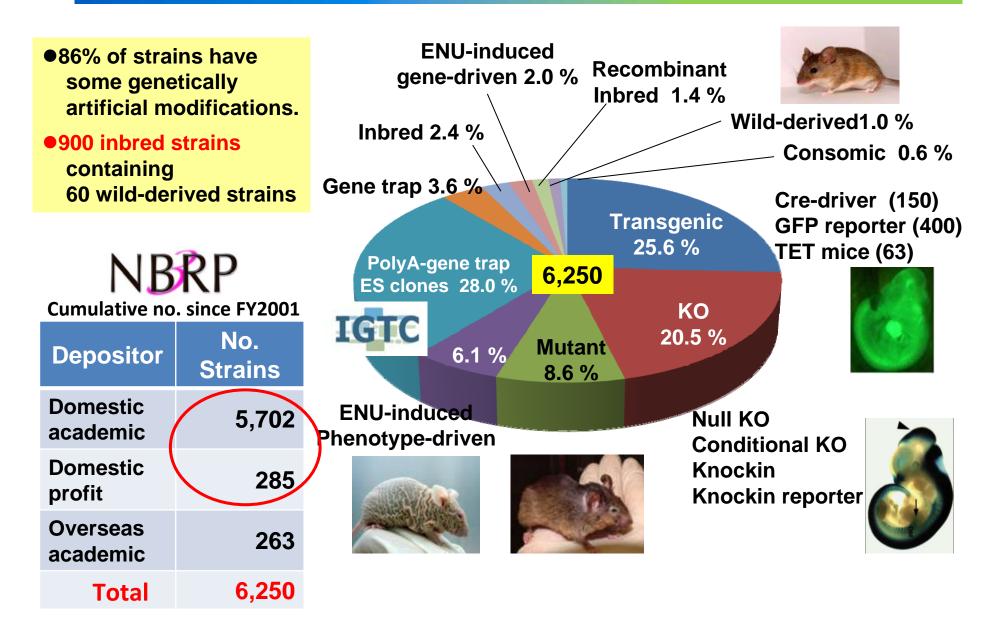
Tokyo

[Yokohama Institute] Center of Research Network for Infectious Diseases Tokyo Liaison Office Itabashi Branch

RIKEN BRC (BioResource Center) as a mouse bank

Duties

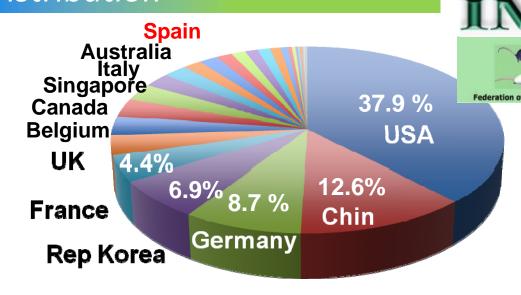

Collection


Cryopreservation

Distribution

Archiving Mouse Resources at BRC

BRC has collected unique strains mainly developed in Japan



International Distribution

We distribute mice to 510 organizations in 32 countries

in Europe

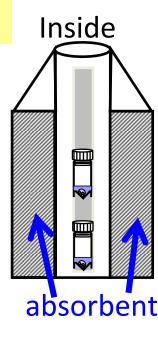
17 countries

List of formats for distribution

Format	No. items distributed
Live mice	18,217
Frozen embryos —————	→ 560
Recovered litters from frozen embryos	446
Frozen sperm —————	→ 32
Recovered litters from frozen sperm	54
Recoverd litters from FIMRe frozen em	nbryos 6
Recoverd litters from FIMRe frozen sp	erm 2
Recoverd chimeras from FIMRe ES ce	lls 3
Only MTA, indirect transfer	121
frozen or fixed tissues and organs	100
Genomic DNA	14
F	OR 10 Years 19,555
(Cumulative no since EV2001)	

About 25% of orders were distributed from frozen materials.

(Cumulative no. since FY2001)


Transportation methods until now

Live mice

Dry shipper

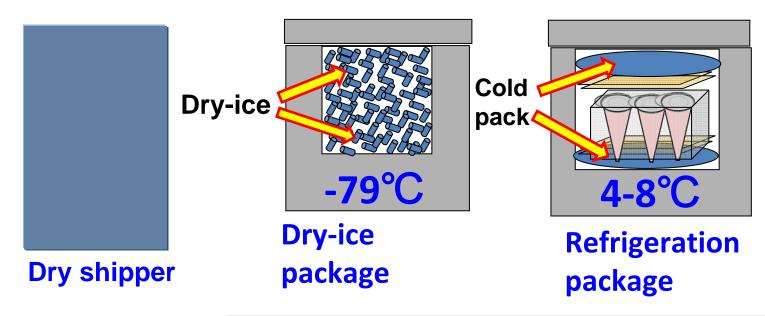
Advantage

- 1. Possible to use immediately
- 2. No need reproductive techniques

Disadvantages

- 1. Should keep temperature, fresh air...
- 2. Possibilities to die, escape, and spread murine diseases.
- 3. Cost of Transportation is expensive

Advantage

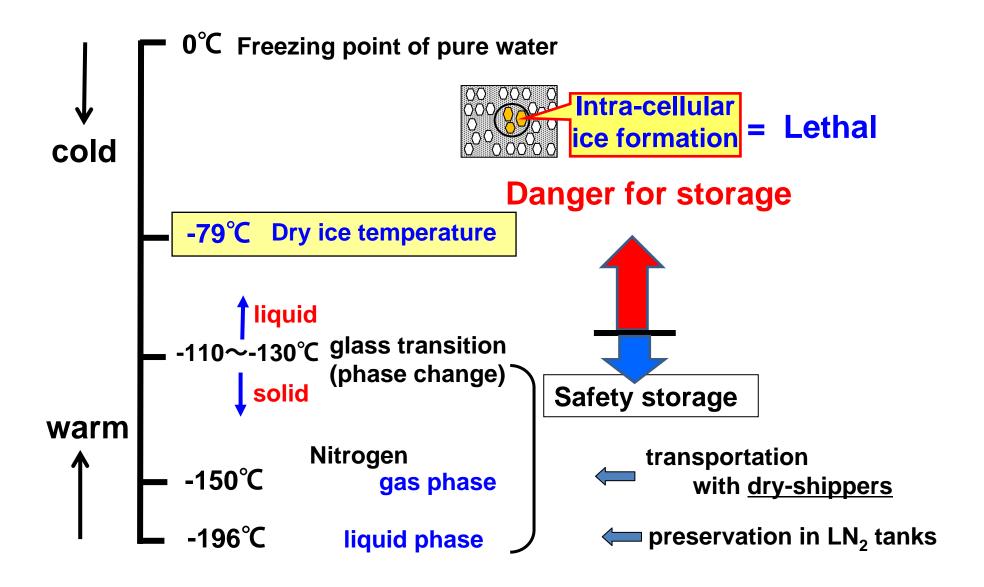

1. Stably keep at under -150°C

Disadvantages

- 1. Large and heavy
- 2. Expensive
- 3. Reproductive techniques are needed
- 4. Incurs full fare for round trip

Experiments categorized by temperature

Transportation with


Embryo Standard

Sperm → Standard

Experiment 1 Experiment 2

Experiment 3 Experiment 4

Summary of temperature and preservation condition

Exp.1 Transportation of embryos at -80°C

Strategy of novel development

- 1: Cryopreserve embryos without ice formation.
- 2: Using the high concentrated freezing

solution.

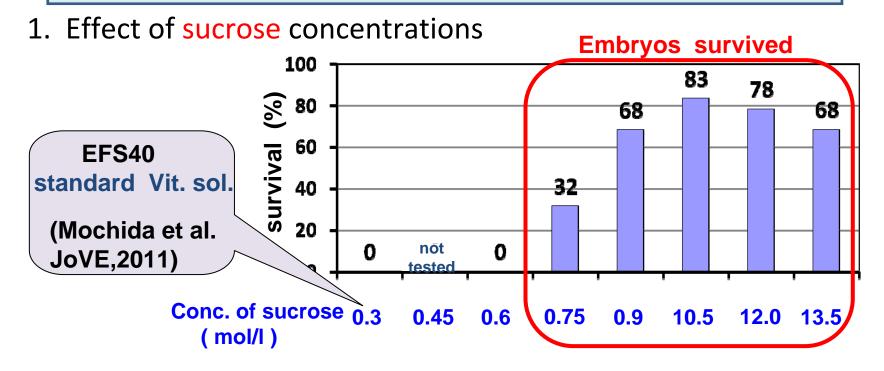
HOV method

(High Osmolality Vitrification)

even at -80°C

- No ice formation.
- High survivability.
- Procedures are simple and quick.

Exp.1 Transportation of embryos at -80 $^{\circ}C$

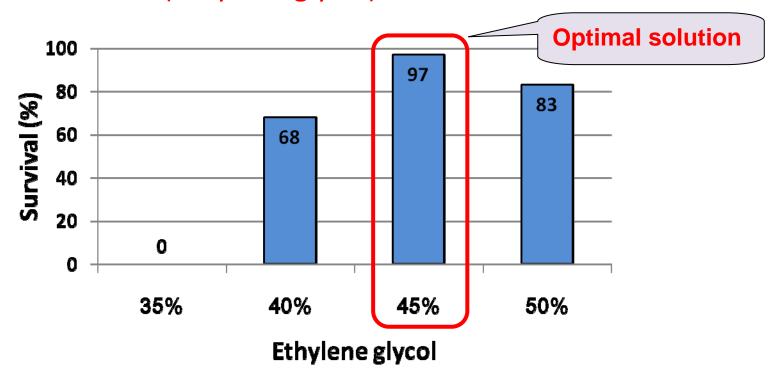

Embryos: 2-cell stage embryos of C57BL/6J strain

Storage: at -79°C with dry ice pellets for 2 Days

developed by Kasai (1990)

Based vitrification sol.: EFS40 (40%EG, ficoll and sucrose)

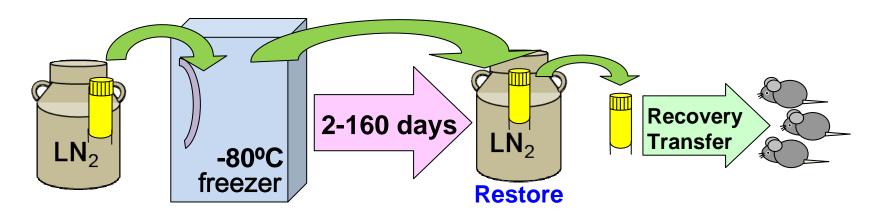
Container: 1.2ml cryotube


Results: After storage at −79°C for 2days, embryos were survived. But the survival rates were not enough. → defective method!

Exp.1 Transportation of embryos at -80°C

Vitrification solutions:

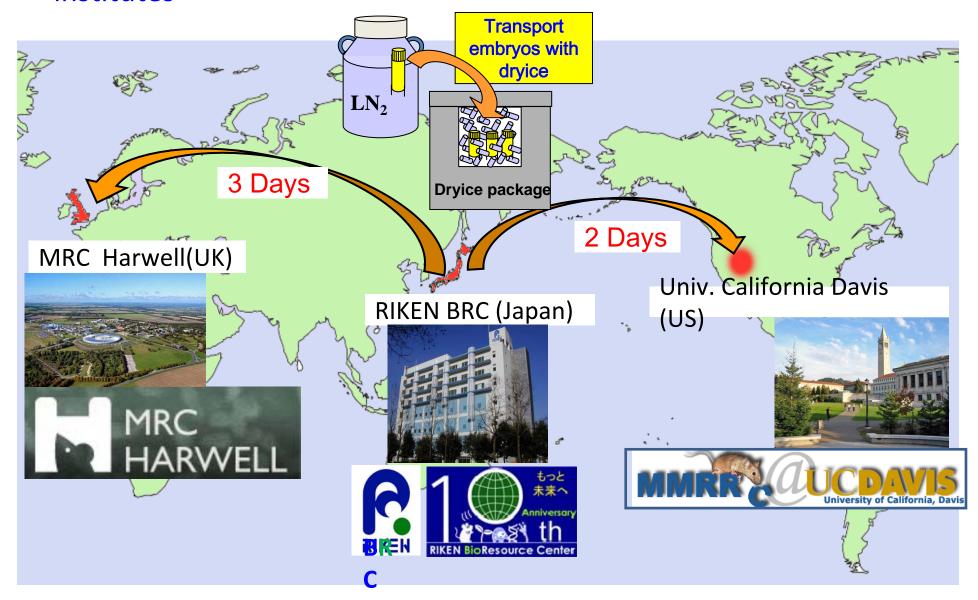
35, 40, 45, 50%EG were added in 18% ficoll and 1.5M sucrose


2. Effect of EG (ethylene glycol) concentrations


Results: Survivability increased over 95%, when embryos were vitrified in solution contains both of sucrose and EG in high concentrations.

→ Optimal solution was found!

Exp.1 Transportation of embryos at -80°C


3. Effect of duration at -80°C

Results: Even after storage for 60 and 160 days in deep freezer, over 50% of embryos were survived and developed into offspring.

Exp.1 Transportation of embryos at -80 $^{\circ}\!C$

4. International transportation to FIMRe institutes

Exp.1 Transportation of embryos at -80°C

5. Results of international transportation to FIMRe institutes

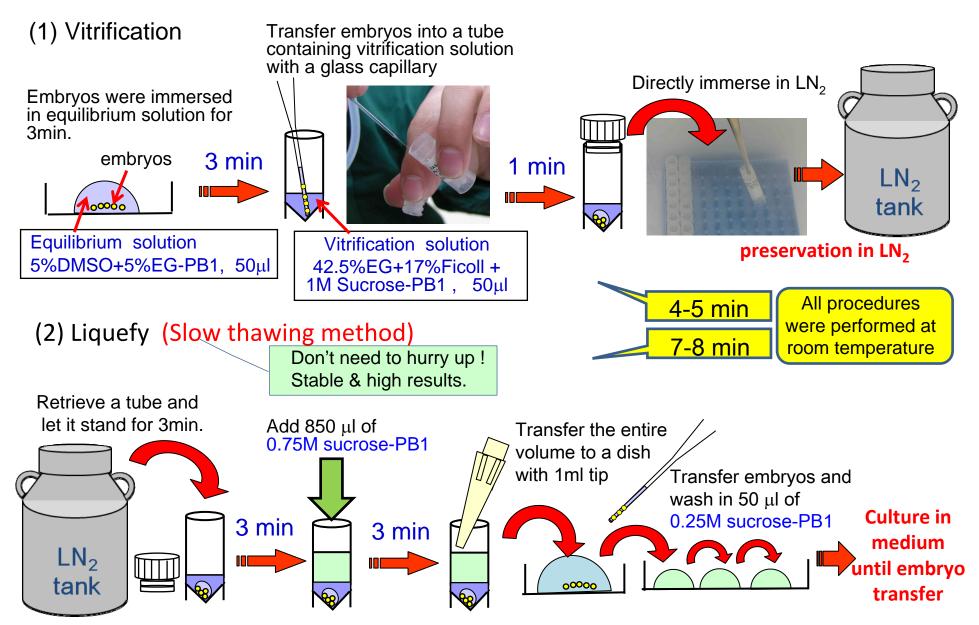
Transportation	Recovery method	Transported embryos	Recovery (%)	Normal (%)	Pregnancy (%)	Embryos	Implant. (%)	Offspring (%)
-	Rapid	60	59 (98)	59 (100)	5 / 5 (100)	59	54 (92)	46 (78)
From Japan to MRC Harwell (UK)	Rapid	75	67 (89)	61 (91)	2 / 2 (100)	43	Not determined	17 (40)
From Japan to Univ. California Davis (US)	Slow	100	100 (100)	99 (99)	5 / 5 (100)	97	70 (72)	47 (48)

Results:

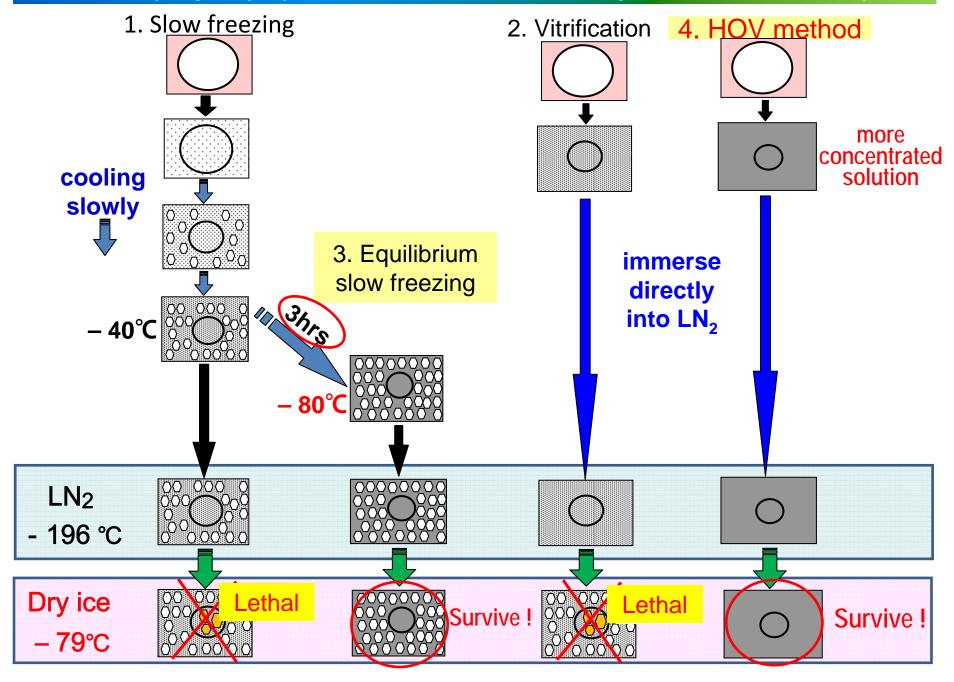
In both of institutes, over 90% of transported embryos were morphologically normal, then 40 and 48% of transferred embryos developed into offspring.

Transported embryos in dry-ice package were successfully recovered and developed into healthy mice.

Exp.1 Transportation of embryos at -80°C

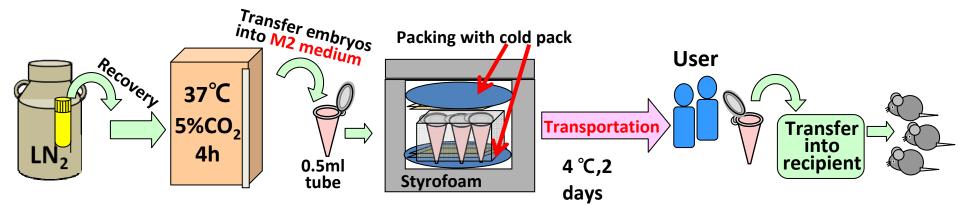

6. Survivability of cryopreserved embryos by HOV method in major mouse strains

	Total No. (%) of embryos			No of recipients	No. of embryos			
Strain	Vitrified	Retrieved (%)	Alive (%)	pregnant/used (%)	Transferred	Implanted (%)	Developed to offspring (%)	
C57BL/6J	265	263 (97)	256 (<mark>97</mark>)	3/3 (100)	39	36 (92)	32 (<mark>82</mark>)	
C57BL/6N	175	173 (99)	168 (<mark>97</mark>)	3/3 (100)	40	36 (90)	21 (<mark>53</mark>)	
BALB/cA	210	210 (100)	206 (<mark>98</mark>)	3/3 (100)	40	31 (78)	18 (<mark>45</mark>)	
129/SvJ	100	100 (100)	93 (<mark>93</mark>)	3/3 (100)	41	33 (80)	27 (<mark>66</mark>)	
DBA/2N	200	200 (100)	193 (<mark>97</mark>)	6/6 (100)	77	44 (57)	25 (<mark>32</mark>)	
C3H/HeN	100	99 (99)	96 (97)	3/3 (100)	41	27 (66)	19 (<mark>46</mark>)	


Results: High survival rates (93-100%) and good ability to develop into offspring (32-82%) in six major inbred mouse strains were confirmed.

Exp.1 Transportation of embryos at -80 $^{\circ}C$

7. Procedures of HOV method (optimized for major mouse strains)



Summary of cryopreservation methods for mouse embryo

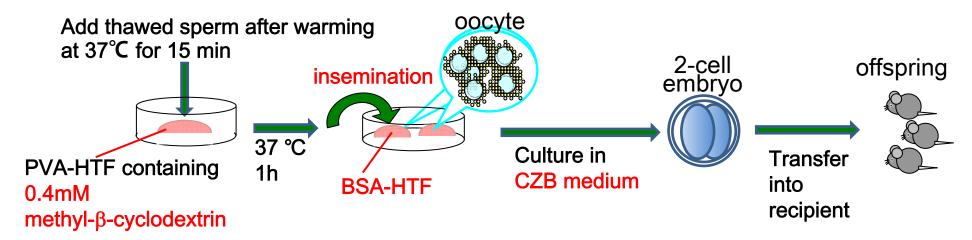
Exp.2 Transportation of embryos at 4-8°C

1. Protocol of transportation developed by Prof. Nakagata in Kumamoto Univ(CARD).

2. Results of domestic transportation

	Total No.). No of	No. of embryos		In vivo development		
Transportation	of embryos	No. of tubes	recovered normal (%)		pregnant (%)	Implantation sites (%)	offspring (%)
From CARD to BRC	120	3	120 (100)	120 (100)	3/4 (75)	25/40 (63)	16/40 (40)
From BRC to NIRS*	96	4	95 (99)	94 (99)	5/5 (100)	55/65 (92)	30/60 (50)

^{*:} National Institute of Radiological Science


Results: After transportation for 2 days at refrigeration temperature, most of embryos were morphologically normal. And 40-50% of embryos developed into offspring by embryo transfer.→ This method is practically useful.

Exp.3 Transportation of spermatozoa at -80 $^{\circ}C$

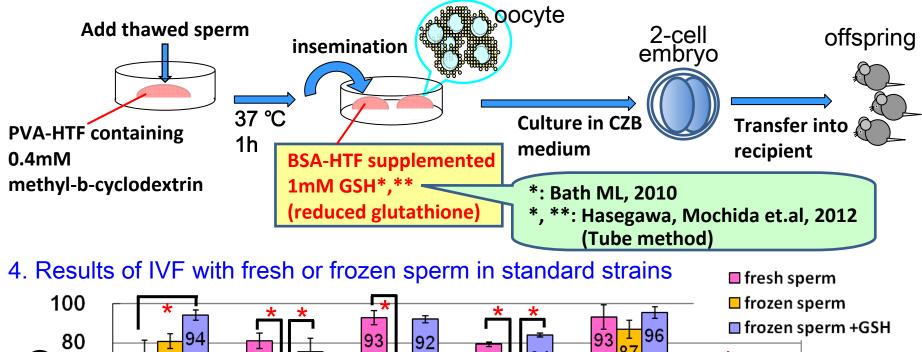
- 1. Summary of transportation with frozen sperm at -80 °C
- (1)Freezing of sperm in 18% raffinose and 3% skim milk solution with plastic straws (Takeshima, Nakagata, Ogawa, Exp. Anim. 1991)
- (2) Transportation of frozen sperm with dry-ice

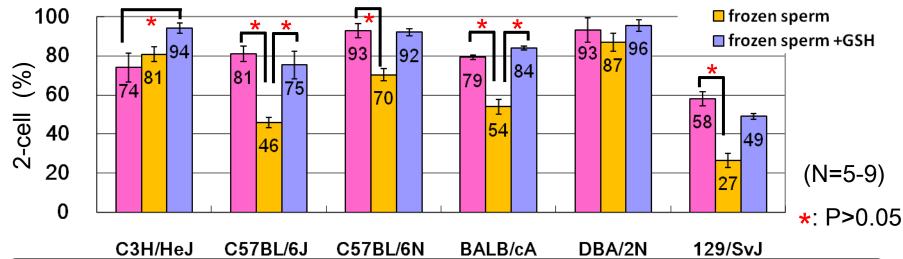
(3) Production of live mouse by IVF and embryo transfer

Exp.3 Transportation of spermatozoa at -80°C

2. Results of IVF with transported frozen C57BL/6J sperm and development *in vivo*.

	No. of o	oocytes	<i>In vivo</i> development			
Sample No.	Inseminated	Fertilized (%)	Pregnant (%)	Implantation sites (%)	Offspring (%)	
1	137	63 (46.0)	3/3	33/36 (92)	24/36 (67)	
2	106	60 (56.6)	3/3	34/36 (94)	30/36 (83)	
3	177	65 (36.7)	3/3	28/36 (78)	24/36 (67)	
4	183	84 (45.9)	3/3	32/36 (89)	26/36 (72)	
Total	603	46.3 ± 4.1%	12/12 (100)	86.0 ± 4.5%	72.0 ± 3.7%	

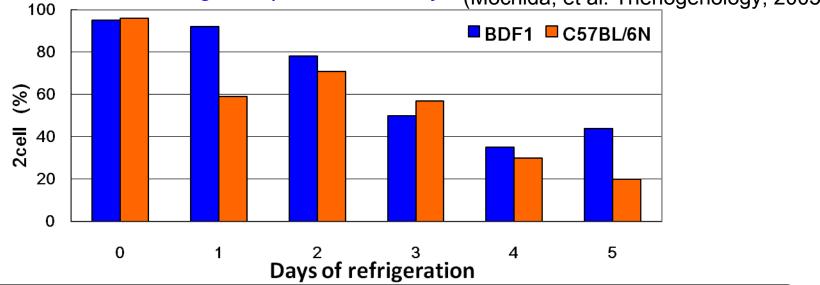

Results: After transportation with dry-ice for 2 days, we successfully obtained offspring from frozen sperm by in vitro fertilization.


→ This transportation procedure is a practical method.

These results were reported at meeting in 2008.

Exp.3 Transportation of spermatozoa at -80 $^{\circ}C$

3. Established procedure of IVFwith frozen sperm


Results: There was no differences between fresh and frozen (added GSH) group except C3H/HeJ strain.

Exp.4 Transportation of spermatozoa at 4-8°C

1. Transportation of sperm within epididymides at refrigerated temperature

2. Results of IVF after storage of sperm until 5 days (Mochida, et al. Theriogenology, 2005)

Results: Embryos were obtained by IVF with refrigerated epididymides for 5 days, but the rates of fertilization decreased gradually.

Exp.4 Transportation of spermatozoa at 4-8°C

3. Results of IVF after refrigeration of C57BL/6J sperm for 2days

4. Practical results of IVF after transportation of sperm (C57BL/6J background strains)

Strain No.						Total	
	1	2	3	4	5	6	Total
Inseminated	70	22	46	10	31	36	
Fertilized	72	24	59	34	50	54	
(%)	97.2	91.7	78.0	29.4	62.0	66.7	70.8 ± 10.0%

1mM GSH were added in insemination medium

Results: After transportation of sperm with refrigerated epididymides for 2 days, we successfully obtained embryos even in B6J strain.

→ This transportation procedure has practically used in our center.

Cost of transportation

1. Frozen materials: applicable within 5days

 Dry-ice packages for both of embryo and sperm are safe, easy to carry and economical method.

	Cos	n	
Distance	Live mice (2-3 pairs)	dry shipper (round-trip)	dry-ice package
Domestic (600km)	\$200~900	\$40	\$20
Intercontinental *	\$2,000	\$2500~3,500	\$600~1,750

^{*:} from Japan to U.S. or Europe

2. <u>Unfrozen materials</u>: applicable within 2days

- We have often used for only domestic transportation.
- The refrigeration package is remarkably economical method.

	Cost	tion	
Distance		dry shipper (round-trip)	refrigeration package (round-trip)
Domestic (600km)	\$200~900	\$40	\$40

Conclusion & Acknowledgements

Conclusion

- Efficient transportation methods of embryos and spermatozoa at dry-ice temperature or under refrigeration were devised.
- HOV method is eminently applicable for routine embryo cryopreservation in many mouse facilities.

Acknowledgements

We thank

Dr. Martin Fray (MRC Harwell)

Drs. K.C.Kent Lloid, M.W. Li, J. M. Vallelunga (U.C. Davis) for performing the recovery test and invaluable discussions.

Our members of

Reproductive technology group in BRC

&

Ogura's Lab. at the party of 10th anniv.

Please visit our HP

Thank you for your attention !!