PLANT MOLECULAR GENETICS

The aim of the Plant Molecular Genetics Department is the study of the regulatory mechanism and pathways controlling plant development, adaptation to the environment, and defense responses to biotic and abiotic stresses.

Research lines focused on developmental processes include the study of root architecture, shoot branching, photomorphogenesis and photoperiodism. Plant adaptive responses to nutrient starvation, toxic concentrations of metals or defensive responses to pests and pathogens are also subject to intense research efforts. In addition to the basic interest of the key biological questions that underlie these processes, our work aims at generating new tools and knowledge for improving crop production. For this ultimate goal, we exploit natural diversity resources as well as genetic engineering, including CRISPR/Cas9 technology for precise genome editing, as promising tools and methods. Direct biotechnological applications of plants are also addressed, such as their use as biopharmaceutical factories or as tools for alleviating metal pollution and related environmental conditions. The model species Arabidopsis thaliana is the routine system of choice for our research, with much experimental work also carried out in Nicotiana benthamiana. Substantial effort has recently been devoted to the development of novel, more amenable model species for plant research, such as the duckweed Lemna spp or the liverwort Marchantia polymorpha, in which our Department has already made significant contributions. Crops such as tomato, potato and Prunus are also major subjects of our studies, to which knowledge generated in the model species is applied.

HEAD OF DEPARTMENT

Roberto Solano

Aerial tubers formed in the axis of leaves of potato plants lacking the BRANCHED1B function (From Pilar Cubas’ lab).
The main goal of our laboratory is to understand the genetic, molecular and evolutionary mechanisms involved in plant adaptation. In particular, we are interested in understanding how developmental traits, such as flowering time, vegetative growth, or trichome patterning, enable plant adaptation. To address this question we are exploiting the genetic variation that exists in nature within the wild, annual, and model plant Arabidopsis thaliana.

Given the relevance of climate change, our research is currently focused in identifying new genes and natural alleles that are involved in the adaptation to different climates. To this end, we are exploiting an A. thaliana regional collection of more than 400 wild accessions collected in the Iberian Peninsula (Montes et al., 2019; Castilla et al., 2020). The analysis of this collection for plant growth has identified an accession from Doñana National Park (Don-0) that is not able to grow at high temperature (Figure 1). Further genetic and molecular analyses identified ICARUS2 as a new gene involved in adaptation to temperature seasonality. In addition, we are studying A. thaliana natural populations for other relevant traits, such as stomata density (Delgado et al., 2019), or microbiome composition (Thiergart et al., 2020).

Finally, in collaboration with Antonio Leyva’s laboratory from the CNB, we are also studying the application of natural varieties of duckweed aquatic plants (Spirodela polyrhiza and Lemna sp) for water phytoremediation. In particular, our lab is currently involved in the project “Duckweed technology for improving nutrient management and resource efficiency in pig”.

ICARUS2 gene is essential for plant growth at high temperature. A) Growth phenotype of two Arabidopsis accessions, Landsberg and Doñana, at 21 and 28 °C. B) Genetic diversity (as haplotype network) of ICA2 proteins from worldwide accessions of Arabidopsis thaliana and A. lyrata. Each node corresponds to an amino acid substitution. Areas of nodes are proportional to frequency.
Plant pathogens cause diseases in many economically important crop plants, leading to severe losses in food production that are also of fundamental importance for forestry, other plant-derived products and for the sustainability of natural environments. This circumstance, together with an increasing world population, poses a severe threat to agriculture and plant sustainability. An important requirement for the development of successful plant disease control strategies is the understanding of host-pathogen interactions and, in particular, of the molecular mechanisms evolved in plants to avoid pathogen infection. This knowledge will be critical to devise effective approaches to minimise plant losses due to infection by microbes.

To this end, we focus our research on exploring the activities of oxylipins, a family of lipid derivatives activating immune responses in plants. Over the last years, our research has revealed that oxylipins, produced by the biosynthetic pathways initiated by fatty acid alpha-dioxygenases (alpha-DOXs) and 9-lipoxygenases (9-LOXs), contribute to the activation of local and systemic defence. In our studies, we showed that cellular organelles such as lipid droplets and mitochondria are important players during the response to pathogen infection and that global translational reprogramming contributes to activation of plant immunity. Moreover, we found that mitochondrial stress signals trigger the induction of epigenetic changes causing a primed state in which plants activate more effective immune responses leading into long-lasting resistance against different types of pathogens (a schematic representation of our working model is shown in Figure 1). Presently, we focus our research in examining these defence mechanisms and defining the signalling processes activating plant defence responses to control pathogen infection. The characterisation of the mentioned processes will contribute to define new mechanisms, signals, pathways, and genes involved in controlling plant immunity.
The control of branch outgrowth is critical for plant fitness, stress resilience and crop yield. We are studying the genetic basis of the control of axillary bud activity and dormancy in the model system Arabidopsis, and in the crop species tomato and potato in which the control of lateral shoot branching is of great agronomical interest. The Arabidopsis thaliana transcription factor BRANCHED1 (BRC1) plays a pivotal role in this process as it is a potent growth inhibitor that prevents axillary bud outgrowth in response to environmental conditions. We have combined ChIP-seq, transcriptomic and systems biology approaches to characterise the BRC1-regulated gene network. We have identified a group of BRC1 direct target genes encoding transcription factors (BTFs) that orchestrate, together with BRC1, an intricate transcriptional network enriched in abscisic acid signalling components.

We have also been studying a novel role of a potato BRC1 gene. The control of carbon allocation, storage and usage is critical for plant growth and development and is exploited for both crop food production and CO₂ capture. Potato tubers are natural carbon reserves in the form of starch that have evolved to allow propagation and survival over winter. They form from stolons, below ground, where they are protected from cold temperatures and animal foraging. We have shown that BRANCHED1b (BRC1b) acts as a tuberisation repressor in aerial axillary buds, which prevents buds from competing in sink strength with stolons. BRC1b loss of function leads to ectopic production of aerial tubers and reduced underground tuberisation. In buds, BRC1b promotes dormancy, ABA signalling and downregulation of plasmodesmata gene expression. This limits sucrose unloading and access of the tuberigen factor SP6A to axillary buds. Moreover, BRC1b directly interacts with SP6A and blocks its tuber-forming activity in aerial nodes. Altogether these actions help promote tuberisation underground.

Genetic control of shoot branching patterns in plants

SELECTED PUBLICATIONS

Cubas, P. Plant Seasonal Growth: How perennial plants sense that winter is coming. Current Biol 2020; 30: R21-R23
PLANT-pathogen-host interaction in viral infections

Plants are frequently infected in nature by viruses. Most of these infections are symptomless, or even give rise to mutualist associations, but plant viruses can also cause severe diseases. Breeding for resistance has been useful to fight some viral diseases, however, natural sources of resistance are scarce. The development of genetic engineering has expanded the available arsenal to generate virus-resistant plants. Understanding natural resistance mechanisms and viral amplification processes is essential to find appropriate targets for biotechnological antiviral strategies. Our research aims to contribute to meet this need. We are mainly interested in the family Potyviridae, especially in Plum pox virus, which causes sharka, a devastating disease of trees of the genus Prunus. In these two years we have paid attention to two viral functions that still have not been intensively studied, the proteolytic processing of viral polyproteins and the post-translational modifications (PTMs) of viral proteins. We have shown that the efficiency of the potyviral leader protease may be restricted to avoid that the uncontrolled release of the silencing suppressor HCpro triggers antiviral defences through complex hormonal and transcriptomic changes. We have also obtained data suggesting that alteration of the proteolytic cleavage between Nia and VPg proteins is involved in the unique known escape of PPV from the HR-like resistance of some Prunus domestica cultivars. Regarding PTMs, our results have led us to propose that, whereas joint and opposite action of O-GlcNAcylation and phosphorylation at the N-terminal protrusion of the PPV capsid protein regulates the stability of this factor, phosphorylation at its core region controls assembly and disassembly of viral particles.

Other remarkable results have been the finding that the sterol isomerase HYDRA1 restricts PPV infection and the demonstration that the viral genomic sequence is shaped by specific dinucleotide restrictions, so that an increase in UpA frequency causes a strong reduction of virus accumulation. Our research has been supported by grants of the Spanish government BIO2016-80572-R and PID2019-109380RB-100 (IPS J.A. García and Carmen Simón) BIO2017-92613-EXP (IP C. Simón), and BIO2015-73900-JIN and PID2019-110979RB-100 (IP A. Valli).

SELECTED PUBLICATIONS

VISITING SCIENTIST

Andrés Mauricio Pinzón
(Universidad Federal do Lavras. Brazil)
Regulation of gene expression in plants

Plant plasticity during adaptation to the environment involves specific transcriptional signal-response networks that allow them to reprogram their growth and development. Regulation of these networks relies on sequence-specific transcription factors (TFs), regulatory proteins responsible for the transcriptional activation or repression of target genes.

Research in our group is focused in the study of the components that determine specific recognition of TF target genes and which may influence in the levels of gene expression. During the last few years we have contributed to the characterisation of one of these components, such as the short DNA sequences bound by TFs, known as TF-binding sites (TFBS). Despite TFBS sequence is the major factor determining target recognition, during the last two years we have explored the role of some other components involved in this process. With this regard, we have demonstrated that binding of some TFs extends beyond the TFBS core sequence, as some distant nucleotides, likely determining DNA-shape, are necessary for protein binding. We are also studying the role of the cytosine methylation epigenetic mark in the TFBS region during TF-target recognition, as well as its genetic control, what will allow adding a new layer of regulation of gene expression.

In parallel to the experimental approaches, we are developing some easy-to-use bioinformatic tools useful for the interpretation of transcriptional data and for the prediction of TFBS involved in the regulation of biological processes. These tools would contribute to a better and faster interpretation of biological data for the plant biology community, particularly in the case of non-expert researchers in bioinformatics or in the study of non-model species.

1. Selection of bHLH transcription factors target genes in plants. Specific binding of MYC bHLH to targets depends on the recognition of the G-box and of some nucleotides distant located contributing to confer a particular shape to DNA. This ‘double check’ mechanism is conserved throughout the plant phylogeny and determines the specification of targets.

2. A web-based tool for the identification of transcription factor binding sites in plants.
Plants have an extraordinary capacity to capture large quantities of nutrients and toxic compounds including heavy metals and arsenic. Arsenic can enter into the food chain through water consumption or crops (particularly rice) and therefore is considered a silent threat to public health.

For the last two years we kept working on the characterisation of the molecular mechanisms involved in arsenic perception and detoxification. Recently we finished the characterisation of a ubiquitination complex involved in the degradation of the transcriptional activator of the arsenate/phosphate transporter (Navarro et al., under review in Molecular Plant; Figure 1). We also followed different approaches to identify the key transcriptional activator of the arsenic responses using genetic and in silico strategies. In this context, we identified several transcription factors involved in the regulation of the arsenic response (Figure 2). In parallel we screened an Arabidopsis collection of Iberian natural accessions for arsenic tolerance and performed a Genome-wide association study, identifying several candidate genes.

In the last two years, we also performed a study of the natural variation of arsenic accumulation in duckweed, a hyperaccumulator aquatic plant with tremendous phytoremediation potential. To this end we obtained a new collection of duckweed natural accessions in collaboration with Carlos Alonso-Blanco at the CNB. Furthermore, we just finished a European project funded by the LIFE programme that aimed to use duckweed to extract nitrogen and phosphate from pig slurry in order to be used as a fertilizer (LIFE 15 ENV/ES/000382).

In the near future we aim to study Arabidopsis natural variation of the ionome in relation with arsenic response to understand the interconnected regulatory networks between arsenic and mineral nutrients. The idea will be to identify new mechanisms underlying metal and arsenic extraction in order to improve bio-fortification and phytoremediation capacity in plants.

1. Proposed model for the control of As(V) uptake in Arabidopsis roots. As(V) is transported inside the cell by the Pi transporter PHT1;1. As(V) is then rapidly reduced to As(III) by the action of the arsenate reductase ARQ1. As(III) signaling modulates the major regulators of PHT1;1 by inducing the transcription of WRKY6 (PHT1;1 repressor) and ASK18 a component of the SCF complex that interacts with the F-box protein PHIF1. PHIF1 targets the PHR1 (the PHT1;1 activator) for protein degradation. As a result of these coordinated events, PHT1;1 expression is repressed and As(V) uptake is reduced.

2. As(V) sensitive phenotype of wild-type and asm19 mutant. Plants were grown in horizontal plates containing 10 µM Pi alone (control) or in combination with 15 µM As(V) for 8 days.
Regulation of gene activity in plants. The Phosphate starvation rescue system

We focus our study on the plant phosphate (Pi) starvation rescue system, which consists of an array of developmental, physiological and molecular responses that allow plants to cope with growth under Pi limiting conditions. This rescue system is a suitable model for studies on regulation of gene activity, and in addition, recently it has attracted considerable interest due to its potential to help design plants with increased Pi acquisition and use efficiency, a necessary requirement to implement low-input sustainable agricultural practices. In the past two years, our main activity has been to exploit natural variation to identify QTLs controlling transcription of Pi starvation genes and affecting Pi acquisition and use efficiency. Our transcriptomic analysis of recombinant inbred lines and natural accessions allowed the identification of a large set of transcription factors controlling expression of Pi starvation responsive genes (Figure 1). And the use of GWAS approaches have uncovered candidate genes affecting growth under Pi limiting conditions (Figure 2), whose characterisation is underway.

Additionally, we have examined the dynamics of interchromatin interactions in response to Pi starvation using Hi-C related approaches. We found no large effects of Pi starvation on chromatin interactions, but observed that genes induced by Pi starvation (PSI) tend to display increased chromatin interconnections among themselves, indicating a constitutive predisposition for coordinated PSI gene expression.

Finally, we have also initiated a study of extrachromosomal circular DNA formation in response to Pi starvation. It is presently well established that eccDNA formation is a widespread characteristic of eukaryotes, where eccDNAs are originated from thousands of locations of their genomes. We have examined eccDNA formation during Pi starvation and in line with expectations more than 1500 eccDNA have been identified, out of which a 3% appear to be Pi starvation specific. We are presently studying their biogenesis and their potential functional significance.
Progressive rise in temperature due to global warming negatively impacts on crops productivity and affects wild taxa phenology, interfering with adaptation to their local environment. In Arabidopsis, warm temperatures promote elongation of seedlings hypocotyl and petioles in a thermomorphogenic response addressed to cool the leaves and protect the shoot meristem from the warm soil. Phenotypic analyses of this output unveiled that the red/far red light phytochrome photoreceptors act as main thermosensors, increased temperatures being shown to accelerate bioactive Pfr reversion into the inactive Pr form. Downstream of phyB, the PIF4 factor modulates temperature induced cell elongation by activating auxin and brassinosteroid biosynthesis, and the expression of cell-wall loosening enzymes required for cell expansion. Elevated temperatures cause up-regulated PIF4 expression at night, by impairing function of the circadian clock “evening complex”(EC) loop, consisting of EARLY FLOWERING 3 (ELF3), ELF4 and the LUX ARRHYTHMO (LUX) DNA-binding protein. They induce as well nuclear accumulation of the E3 ligase COP1, shown to promote seedlings etiolation by targeting proteasomal degradation of many PIF4-antagonising factors. However, how these signalling events converge to thermal elongation is not well understood. To gain insight on the thermal role of these main signalling hubs, we have measured hypocotyl lengths of different combinations of mutant/over-expression lines grown at 22ºC and 28ºC and variable day length conditions and fitted the hypocotyl growth data into a mathematical model build on the described interactions for these regulators. Notably, the adjusted model fully reproduced thermal elongation of the studied genetic backgrounds and correctly predicted the thermal response of novel genotypes, therefore showing that thermal regulation of phyB, ELF3/EC and COP1 is sufficient to fully explain thermomorphogenic growth of Arabidopsis seedlings. Moreover, the model underscored a main temperature signaling function of the E3 ligase COP1, that acted independently of its inactivation by phyB, and which we validated experimentally. COP1 was shown to act though this thermal signaling activity as a main input for temperature entrainment of the clock, our current research efforts being addressed to the molecular understanding of this entrainment mechanism. Main focus of research in our team is thus directed to:

- Study the role of BR signaling and the master regulator BIN2 kinase in the control of COP1 nuclear shuttling.
- Characterise the cellular mechanisms underlying temperature-induced nuclear COP1 accumulation.
- Test the possible role of ELF3-COP1 interaction in modulating each other’s function.
- Gain a better understanding on how this temperature signaling network affects circadian clock function and response of Arabidopsis plants to combined heat and drought stresses.

Overall, results from this research will identify best loci for increased tolerance to heat and drought stress as influenced by day length, and therefore guide smart breeding of seasonal crops for increased resilience to climate change.
Signalling networks in plant development and defense responses

Our group studies how plants adjust their growth and development to challenges from pests and pathogens.

These are some of the questions we are currently addressing:

1) What mechanisms initiate stem cell differentiation in plants and how are they regulated by biotic stresses to modulate organ growth rates? Our working hypothesis is that nuclear migration of the Arabidopsis proteins IYO and RIMA functions as a switch to reprogram the transcriptome and trigger stem cell differentiation in plants. We are studying how IYO/RIMA nuclear localisation and activity is controlled by developmental and biotic cues to control plant growth.

2) What are the roles of vacuoles in plant development and defense? Through a genetic screen, we are characterising genes involved in transport to, and biogenesis of, plant vacuoles, and studying how interfering with their function affects growth and resistance to pests and pathogens.

3) Do non-vascular plants activate systemic defenses against herbivores? When herbivores damage tissues of higher plants, wound signals are transmitted through the vasculature to activate systemic defenses in undamaged tissues. Our studies could provide important clues on the development of systemic signalling systems during the evolution of land plants.
The relevance of protein ubiquitination as an integral mechanism of many signaling pathways in plants has been demonstrated extensively. Ubiquitin (Ub) conjugation to proteins (i.e. ubiquitination) may trigger degradation of protein targets at the 26S proteasome or changes in their properties (e.g., protein activity, localisation, assembly and interaction ability), depending on the extent or specific Ub chain configurations. Protein ubiquitination is mediated by an enzymatic cascade in which different types of E3 Ub ligases provide the substrate specificity. Among them, Cullin4 RING E3 ubiquitin ligases (CRL4) have been involved in biological processes spanning the plant’s whole life, including embryogenesis, seedling photomorphogenesis, circadian clock function, flowering and tolerance to different stresses (i.e. drought, high salinity, cold, osmotic stress) by promoting degradation of specific targets controlling those processes (Fig. 1).

As an example, we have recently shown that DDA1, a substrate adaptor of CRL4-CDDD complexes, recognises abscisic acid (ABA) receptors, triggering their ubiquitination and proteasomal degradation (Irigoyen et al, The Plant Cell 2014). Therefore, CRL4-CDDD complexes act as repressors of ABA-mediated water stress responses under optimal growth conditions. Interestingly, CRL4-CDDD function is performed in close proximity to chromatin, which should enable rapid translation of environmental and stress signals into changes in gene expression. Indeed, recent results from our laboratory showed that CRL4-CDDD complexes are part of a molecular pathway controlling epigenetic homeostasis (including Histone2B ubiquitination) in response to external stimuli (i.e. light conditions; Nassrallah et al, eLife 2018). Our current objectives aim to identify and characterise additional mechanisms by which CRL4-CDDD controls the accumulation of specific epigenetic marks over the plant genome in response to environmental changes, to regulate expression of specific set of genes that lead to plant adaptation to changing climate conditions.
Jasmonate signalling and plant defense

Jasmonates (JAs) are fatty acid-derived signalling molecules that are essential for the survival of plants in nature, since they are important activators of stress responses and developmental programs. The main focus of my lab is to understand the biological mechanisms that govern the JA signalling pathway in plants, knowledge that is crucial to design biotech and agronomical applications that improve plant resistance to stresses and plant yield. We have traditionally worked in the model plant *Arabidopsis thaliana*, but have recently focused in the liverwort *Marchantia polymorpha* due to its remarkable genetic advantages, such as very low gene redundancy.

Our major achievements in the last two years are:

- Identification of a new pathway for thermotolerance in plants (Monte et al., Curr Biol, 2020)
- Identification of CUL3^{BPM} E3 ubiquitin ligases that regulate MYC transcription factors stability and JA responses (Chico et al., PNAS, 2020)
- Characterisation of conserved basal defence mechanisms in land plants (Gimenez-Ibanez et al., Curr Biol, 2019)
- Design and obtention of a tomato resistant to bacterial speck by CRISPR/Cas9-based mutation of *SlJAZ2* (Ortigosa et al., Plant Biotechnology Journal, 2019)
- Characterisation of MYC2 orthologs in *Marchantia polymorpha* (Peñuelas et al., The Plant Cell, 2019)
- Characterisation of the single JAZ repressor in *Marchantia polymorpha* (Monte et al., Mol. Plant, 2020)
- Identification of a new function of MYCs in photomorphogenesis (Ortigosa et al., Plant J, 2020)
- Collaborated in the characterisation of PIF transcription factors in reproductive development (Costa Galvão et al., Nat Commun, 2019)
- Discovery of bioactive hydroxylated derivatives of JA-Ile (Jimenez-Aleman et al., Biochim Biophys Acta Mol Cell Biol Lipids 2019)
- Identified the DNA target sequence of many plant transcription factors using previously developed tools and in collaboration with several groups (Ramírez Gonzales et al., Plant J, 2020)
- Collaborated in the integrated multi-omics analysis of the plant response to jasmonic acid (Zander et al., Nat Plants, 2020)

SELECTED PUBLICATIONS

GROUP LEADER

Roberto Solano

SENIOR SCIENTISTS

Andrea Chini
Selena Gimenez-Ibanez

POSTDOCTORAL SCIENTISTS

José Manuel Chico
Guillermo Jiménez Alemán
Sophie Kneeshaw
Addis Londatsbehere
Gonzalo Soriano Sancha

TECHNICIAN

Gemma Fernández Barbero

PHD STUDENTS

Santiago Michavila Puente-Villegas
Alberto Iniesta Saiz

SEM image of epidermal air pore of Marchantia polymorpha

Arachegoniophores of Marchantia polymorpha